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Abstract

This paper describes how intelligent agents
can simulate human operators to aid in the
analysis and design of complex systems. The
paper presents two examples of adapting the
Crew Activity Tracking System (CATS) to
function as an intelligent agent. The first is a
model-based design application, in which CATS
agents perform the task of air traffic controllers
in order to test a new operational concept. The
second concerns human error analysis, in which
a coordinated team of CATS agents represents a
flight crew and aircraft destroyed due to
controlled flight into terrain. The paper also
discusses issues regarding the development of
task model-based agents that make plausible,
human-like errors and the use of such agents.
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1 Introduction

Applications of software agents—intelligent,
autonomous computer code—are proliferating as
agent technologies advance. One application of
particular interest for the analysis and design of
complex systems is to use agents to simulate
human operators. Agents can ‘close the loop’
between other human operators and/or automated
systems to provide a holistic view of system
operations. The more complex and team-oriented
a system is, the more expensive and time
consuming it is to conduct human-in-the-loop
simulations of the entire system. Furthermore, if
the operational concepts to be tested are
especially novel, it may be difficult to recruit and
train humans that can skillfully manage the task
and remain free from biases that stem from
experience with present day operations. Agents,
on the other hand, can perform the task in
specific, controllable ways to test whether a
particular technique offers specific advantages,
or whether it creates problems for other
subsystems. Such agent-based simulation studies
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can determine if the concept works well enough
to warrant full-mission human-in-the-loop
simulation. If it does, these agent studies can
determine how the human subjects should be
trained.

This perspective on simulating human
operators differs from that proffered by cognitive
modeling researchers (e.g., [1]). The emphasis, at
least initially, was on testing and enhancing the
fidelity of models of human perception and
cognition by implementing the models in
computational agents. More recently, researchers
sought to incorporate simulated humans into the
design process to assess the design with respect
to not only the physical attributes of human
operators, but also the cognitive attributes (e.g.,
[L1]).

Another important line of research
emphasizes the importance of operator task
models to support the design process, and the
potential for using these models to develop
operator training and aiding systems (e.g., [13].
Yet another uses task analysis as a tool to help
ensure that designs enable operators to directly
perceive functional constraints in the task
environment to support task performance (e.g.,
[12, 17]). Increasing use of distributed
simulation techniques for design has made the
benefits of using simulated human agents all the
more  attractive, and so-called ‘human
performance models’ have broadened in scope to
include agents based on both task models (or
‘activity models’), and cognitive models (e.g.,
[9D.

This paper describes the Crew Activity
Tracking System (CATS) as a framework for
developing intelligent agents. CATS originated,
however, as a task model-based framework to
support intelligent training and aiding
applications in complex systems [6, 7]. Indeed,
proof-of-concept training and aiding systems
show promise (e.g., [3]), but to date CATS has
yielded more tangible benefits as a tool to
support the design and analysis of operator
procedures for new operational concepts [2, 4,
8]. Visualization capabilities have been added to
CATS to bolster its effectiveness in this capacity
[2,4,5].
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Simulating human operators is not always
addressed as an integral part of a model-based
design process (cf. [13]). But while CATS
fulfills requirements for supporting a model-
based design process that culminates with
operator assistance, CATS can also be adapted
into a human performance model. To help design
new systems, ‘CATS agents’ can simulate
proposed operator roles to test the behavior of
other system components and investigate the
error tolerance of the overall system. For existing
systems, CATS agents can simulate operator
behavior using knowledge of current operating
procedures to shed light on ‘error chains’ that
contribute to unsafe situations. This paper briefly
describes CATS, then presents two examples of
using CATS agents for analysis and design.
Finally, it discusses the development of task
model-based agents that make plausible, human-
like errors, and the potential uses of such agents.

2 Crew Activity Tracking System

The original CATS implementation uses a
computational task model to ‘understand’ the
activities the crew performs when navigating
using the automatic flight modes found on the
Boeing 757 aircraft, in order to support training
and aiding for mode awareness [6]. CATS takes
as input air traffic control clearances received by
the aircraft via data link, and data about the
aircraft and onboard system states, and uses its
model to predict how the crew should preferably
configure the autopilot in order to comply with a
clearance. As pilots perform actions, CATS uses
its model to check that the operations are
performed correctly. In this sense, CATS ‘tracks’
flight crew activities to ‘understand’ that they are

error-free.

The activity tracking process has two threads:
one predicts preferred activities, and one
interprets actual operator actions. Fig. 1 depicts
the CATS architecture that implements the
activity tracking methodology. As the state and
constraint representations that comprise the data
model are updated, CATS correspondingly
updates ‘context specifiers’ that comprise the
current context model. CATS then searches its
operator activity model to find the activities that
have conditions for prediction that the current
context satisfies. When an activity is predicted,
CATS starts a timer and waits for the operator to
execute the activity. The second thread of the
process, the action interpretation thread, attempts
to interpret operator actions by linking them to
the predicted activities and, failing that, to
acceptable alternatives. Actions that CATS
cannot interpret (‘uninterpretable’ actions) may
be errors. Possible errors of omission are
signaled when a timer expires before an operator
performs a predicted or alternative valid action.
Details about the activity tracking process, an
example CATS model, and a validation study are
provided in [7]; enhancements and further
applications are discussed in [2, 3, 4, 5, 6, 8].

3 CATS Agent Development

Two approaches have been pursued for using
CATS as a framework for developing human
performance models. In the first, a CATS agent
simply ‘executes’ the actions identified by the
prediction thread of the activity tracking process.
The second approach uses a more elaborate
scheme for coordinating the activities of multiple
CATS  agents—including  cognitive  and
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controlled system, and activity tracking output and applications.
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perceptual activities. The next two subsections
describe these approaches; examples of their use
follow.

Nominal Agent

In the ‘nominal agent’ scheme, a nominal
CATS model of proposed operator tasks required
for a new operational concept is developed as
prescribed for model-based design. CATS links
to a distributed simulation that includes proposed
automation, other operators, etc. It requests and
receives data, identifies the current context, and
uses the model to predict activities (Fig. 2).
Instead of waiting for the operator to perform
actions, so it can track them, the agent executes
them in the simulation loop. To simulate
activities that are not ‘instantaneous,’ the CATS
model can incorporate terminating conditions to
reflect the duration of activities. Under this
scheme, a CATS agent may use multiple models
of individual operators, or a single model that
represents the tasks of the entire team, annotated
to capture individual responsibilities. Also, a
single CATS agent or multiple agents may be in

the simulation loop.
Nominal
Activity Model

True States & True
Constraints Context

Fig. 2: CATS simulation of nominally predicted
activities.

Correct
Activities

Coordinated Teams of Agents

A second approach produces agents that can
coordinate their activities with other agents. This
more radical adaptation uses activities to
represent aspects of cognition (cf. [18]). Instead
of simply operating according to the true state of
the world, as in the ‘nominal agent’ scheme, the
agent must actively ‘perceive’ aspects of the
environment by performing activities that
represent perceptual processing and, similarly,
actively ‘recall’ this information for use. Instead
of formulating the current context based on the
true state of the world, each agent maintains
‘beliefs’ about the world that may or may not be
true (cf. [10]). The CATS activity representation
of ‘cognitive,” manual, verbal, and ‘perceptual’
tasks related to monitoring, assessment,
communication, and control guides the way in
which an agent acquires, transforms, and
transfers beliefs to other agents. The transferal of
beliefs provides the mechanism through which
multiple agents of this form can coordinate.

This scheme is depicted in Fig. 3. The agent
performs monitoring activities to ‘perceive’
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beliefs from other agents (e.g., by hearing what
they verbalize), or states and constraints from the
environment (not shown). The agent converts
perceived information to beliefs via assessment
activities; assessment activities also transform
existing beliefs by comparing them, aggregating
them, etc. The set of beliefs that results from this
process represents the ‘perceived context’ (as
opposed to the true context). The agent then
enables activities based on the perceived context.
However, if the activity involves coordinating
with another agent, the agent does not actually
execute the activity until the other agent also has
beliefs that allow the ‘other side’ of the
coordination to occur. The CATS activity model
represents all of the information required to
specify the conditions (in terms of rules made up
of beliefs) under which the agent should enable
an activity. The model also represents what
beliefs the agent acquires, transforms, or
transfers to which other agent(s) when the agent
performs the activity (again, if the other agent(s)
are prepared to coordinate).

A simple processing scheme is implemented
in a ‘CATS Agent Simulation Executive.” The
executive uses a ‘pool’ of beliefs that agents are
attempting to transfer during that current
processing cycle as the medium for coordination
between agents (multiple distributed executive
processes for agents of this form are beyond the
scope of this paper). The executive first enables
activities from each agent model and places them
in queues according to class (i.e., cognitive,
manual, perceptual, verbal). It then attempts to
execute each activity in each queue of activities.
Contrary to the ‘flow’ implied in Fig. 3, the
executive executes manual and verbal activities
first during each cycle, so that beliefs get added
to the ‘pool” and made available to other agents.
Next, agents perform cognitive activities to
transform beliefs, if necessary. Finally, agents
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Fig. 3: CATS agent acquires and transforms
beliefs via monitoring and assessment
activities, and coordinates with other agents
by transferring beliefs via communication
and control activities.
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perform perceptual activities to acquire beliefs
from the ‘pool’ that are there as a result of
activities performed by other agents. Effective
task coordination requires that some beliefs
pertain to what other agents are doing, or to what
the agent needs to remember to do itself (i.e.,
prospective memory). This scheme allows agents
to coordinate wusing models of arbitrary
complexity.

Fortuitously, the Java™ implementation of
the CATS model enables these ‘cognitive’ agents
to be developed with relatively little additional
code. The executive process requires usual
CATS queries to the model, and the beliefs
processed when an activity is executed are
represented through reuse of the CATS model
specification syntax. A symbolic notation allows
agents to locate relevant beliefs in the “pool” and
keeps additional processing code to a minimum.

4 Example I: Air Traffic Controller
Agents for Design

The first example concerns research in which
CATS agents simulated the performance of air
traffic controllers (henceforth, ‘controllers’) to
support model-based design of a new air traffic
management concept. One of the initial
motivations developing controller agents was to
supplant scarce and expensive human controller
subjects in the early phases of developing a
large-scale distributed simulation of the new
operational concept. Also, the research could

better explore issues surrounding changes to
information displays and interaction methods, by
capturing key features of the interactions
between controllers and controlled aircraft. Such
features include clearance types and the pace at
which controllers issue them given various
attributes of the traffic flow [15]. For example,
the ebb and flow of workload imposed on
controllers could be examined via a timeline
showing clusters of different classes of activities
(Fig. 4).

These agent simulations were developed
using the ‘nominal agent’ approach. Agents
represented two interacting controllers, each with
a separate model reflecting their distinct roles.
CATS performed the basic process of assessing
current context, then predicted (i.e., executed)
controller activities according to both models.
Some contexts could result in both agents
performing actions. Using these agents, a new
interface prototype was developed to provide the
information needed for the new operational
concept.

A second phase of the research [16] sought to
estimate benefits that could be realized under the
proposed concept. One potential benefit is a
reduction in the number of clearances that
controllers must issue. Radio frequency
congestion and delayed radio transmissions (i.e.,
transmissions  that cannot be executed
immediately because there is already another one
in progress) are areas of concern. Actual
controller data for the controller positions and
airspace in question were used to enhance the
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Fig. 4: Sample output from a CATS agent simulation of an air traffic controller, showing salient events,
locations of aircraft when the agent performed actions on them, and a timeline of activities.
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CATS agents with terminating conditions based
on the average duration of a particular task (e.g.,
issuing a particular type of clearance). This set of
models was then further modified to exclude all
the activities that, in the ideal case, would be
unnecessary under the new operational concept.
Attributes of the associated traffic data were also
changed so that plausible numbers of the aircraft
represented in the traffic data would be
appropriately equipped and operating under the
new concept.

The results of the agent simulations provided
estimates of the maximum possible benefits that
could be realized under the proposed concept: a
forty per cent reduction in the number of
transmissions required per aircraft is possible.
The simulations also afforded the opportunity to
examine the phenomenon of delayed radio
transmissions. Currently, when workload is
especially high during arrival rushes, a
transmission has to be delayed approximately
every thirty seconds. The agent simulations
indicated possible improvements of ten to twenty
per cent (depending on specific circumstances).
Thus, in addition to aiding in the identification of
information requirements and new interaction
methods, the CATS agent simulations helped
quantify potential benefits of the air traffic
management concept. Incorporating agents into
this particular model-based design effort
provided insights that would have been much
more costly to obtain through human-in-the-loop
simulations.

S Example II: Pilot Agents for

Accident Analysis

Another research effort used the ‘coordinated
teams of agents’ approach described above to
recreate a controlled-flight-into-terrain (CFIT)
aircraft accident. Organizers of a FAA/NASA
Aviation Safety Program workshop on human
error solicited agent-based models of the
accident for presentation. The accident involved
several factors known to increase the likelihood
of crew errors, including a ‘non-precision’
approach, bad weather, and a fatigued crew; non-
precision approaches in particular are often
associated with CFIT accidents.

A simulation with coordinating CATS agents
was developed with the architecture shown in
Fig 5. Two agents represent a human crew (Pilot
Flying, and Pilot Not Flying), and a third
represents the aircraft’s cockpit interface
(‘Aircraft’ in Fig. 5). Treating the aircraft
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Fig. 5: Coordinated CATS agent simulation; ovals
represent CATS agents.

displays and controls as an agent allows the pilot
agents to ‘tell the aircraft’” what current target
values are, and the aircraft can ‘tell the crew’
about its state. The aircraft agent is linked to a
simulation that updates the aircraft’s state on
each processing cycle.

Models of the tasks each pilot nominally
performs when flying a non-precision approach
procedure were adapted from previously
validated CATS models [7] and training
manuals, and used as the starting point for
developing the CATS agents. For the pilot
agents, tasks such as "maintain situation
awareness," '"maneuver aircraft," "configure
aircraft for landing,” and "perform approach
communications” were decomposed into
cognitive, verbal, manual, and perceptual
actions. The specific beliefs that are acquired,
transformed, or transferred to another agent
when the agent performs a given action were
also added to each model (e.g., "current_alt is
1980 feet," "target alt is 1400 feet"). The
aircraft agent was modeled to ‘perform tasks’
such as "update target altitude," to represent
receiving a new target altitude when the pilot-
not-flying set one, and "display altitude" to
represent supplying the current altitude to the
pilots when they perform "monitor altitude"
actions. The aircraft ‘tasks’ were modeled as
always enabled, so that the other agents could
interact with the aircraft whenever they needed
to.

The agents were implemented to create the
simulation shown in Fig. 6. According to the
processing described above, each cycle began by
checking whether an environmental event, such
as an air traffic control clearance, had occurred.
Then enabled activities were added to each
agent’s activity queues, and the process of
interacting with the ‘pool’ of beliefs was
performed. A series of iterative model
enhancements resulted in a simulation that could
execute the approach procedure, including
relevant "call-outs," and other coordination
activities, and successfully land the aircraft.
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Fig. 6: Screen snapshot of the CATS agent CFIT accident simulation, with key components identified.

An analysis of the required activities, and the
beliefs each agent had to have when in order to
execute them, indicated that the accident
trajectory could be explained if the pilots had
misread their approach chart in a specific way.
For the non-precision approach in question, the
Distance Measuring Equipment (DME) distance
used to specify when the aircraft should ‘step
down’ to the next lower altitude was measured
not from the runway threshold, but from a point
several miles before it. By initializing the set of
beliefs of the pilot agents to reflect the incorrect
DME distances, the simulation culminates with a
CFIT accident at almost the precise location
relative to the terrain as the real accident upon
which the scenario was based (Fig 6).

These results indicate that this non-precision
approach chart may have contributed to the crew
error. However, a number of unanswered
questions remain regarding how the crew failed
to catch and correct their error, given the number
of activities they performed that are designed to
check and double-check for such dangers. In
particular, the warning system that indicates
proximity to terrain was working properly, and
modeled in the agent simulation. However,
including the nominally correct response to the
alert ("Pull up! Pull up!") in the pilot models
averts the CFIT accident.
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6 Discussion

The examples above demonstrate that CATS-
based agents can be useful for analysis and
design of complex systems. There are also
numerous intriguing future lines of investigation,
including one hinted at in Fig. 3: ‘bugs’ in the
model of activities, mistaken beliefs, or slips
introduced via mechanisms thought to contribute
to such errors in humans [14] could be added to
create agents that err in realistic ways. Such
agents could be used to investigate the error
tolerance of a system in a manner similar to that
in which the ‘nominal agent’ approach is used to
test how the system operates properly.
Additional research is needed, however, to
adequately represent error mechanisms and,
equally important, error recovery mechanisms, as
they relate to system operations.

A parallel problem is that errors lead to
disasters only infrequently. How can simulations
produce error chains for which a system is most
at risk in a short time? CATS agents may help,
because they can be implemented reasonably
quickly. Such agents, in conjunction with formal
system models, may help focus the effort on
aspects of operations that are particularly
susceptible to errors. Thus, instead of relying on
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Monte Carlo simulations, and hoping to stumble
across an error situation worth investigating
further, agents could err and fail to recover in
systematic ways, and any negative effects on
overall system operation could be flagged. By
further restricting the analysis to portions of the
operating regime identified as unsafe via formal
methods, analyses could perhaps address risks to
safe overall operations before the design is
fielded.
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